Jump to content

NESC Publications – Based on NESC Assessments 


NASA

Recommended Posts

  • Publishers

NASA Technical Memorandums (TM), NASA Technical Publications (TP), and NASA Contractor Reports (CR) 

  1. NASA/TP-20220015152 Optimization Approach for Wind Tunnel Fan Blade Strain Gage Correlation with Test Fixture Unknowns. 
  1. NASA/TM-20220015363 Technology Maturation Report for Dam- age Arresting Composites under the Environmentally Responsible Aviation Project. 
  1. NASA/TM-20220017053 Unique Science from the Moon in the Artemis Era 
  1. NASA/TM-20220018183 Recommendations on Use of Commercial- Off-The-Shelf (COTS) Guidance for all Mission Risk Classifications – Phase II 
  1. NASA/CR-20230002635 Assessment of Coated Particle Fuels for Space Nuclear Power and Propulsion Systems; A Report for the NESC Nuclear Power & Propulsion Technical Discipline Team 
  1. NASA/TM-20230004147 Ceramic Capacitor Grain Size Analysis Using Electron Backscatter Diffraction (EBSD) 
  1. NASA/TM-20230004154 Multi-Purpose Crew Vehicle (MPCV) Crew Module (CM) Side Hatch Dynamic Analysis 
  1. NASA/TP-20230005922 Best Practices for the Design, Development, and Operation of Robust and Reliable Space Vehicle Guidance, Navigation, and Control Systems 
  1. NASA/TM-20230006220 Metallurgical Factors that Govern ST Properties in Commercial 2219-T87 Thick Plate 
  1. NASA/TP-20230006226 Evaluation of Through-thickness Microtextural Characteristics in 2219-T87 Thick Plate 
  1. NASA/TM-20230006507 Flight Mechanics Analysis Tools Interoperability and Component Sharing 
  1. NASA/TM-20230006648 Verification of Testing Standard for Carbon Dioxide (CO2) Partial Pressure in Extravehicular Activity (EVA) Suits 
  1. NASA/TM-20230007658 ISS Universal Waste Management System (UWMS) Optical Sensor: Phase 1-Feasibility 
  1. NASA/CR-20230010099 NASCAP Surface Charging Tool Development; Nascap-2k Additional Examples 
  1. NASA/TM-20230010624 Self Reacting-Friction Stir Weld (SR-FSW) Anomalies 
  1. NASA/TM-20230010640 Space-Shielding Radiation Dosage Code Evaluation; Phase 1: SHIELDOSE-2 Radiation-Assessment Code 
  1. NASA/TM-20230010680 Shock Prediction Advancement: Transient Finite Energy (TFE) Shock Predictor 
  1. NASA/TM-20230011306 NASA Exploration Systems Maintainability Standards for Artemis and Beyond 
  1. NASA/CR-20230012105 A Compilation of Composite Overwrapped Pressure Vessel Research (2015–2021) 
  1. NASA/TP-20230012154 Software Error Incident Categorizations in Aerospace 
  1. NASA/TM-20230013348 Unconservatism of Linear-Elastic Fracture Mechanics (LEFM)Analysis Post Autofrettage 
  1. NASA/TM-20230013386 Floating Potential Measurement Unit (FPMU) Data Processing Algorithm Development and Analysis Assessment 

Technical Papers, Conference Proceedings, and Technical Presentations

Avionics  

  1. Chen, Y.: Statistical Interpretation of Life Test – Comparison between MIL and JEDEC requirements. NASA Electronic Parts and Packaging Program’s Electronic Technology Workshop, June 12-15, 2023. 
  1. Franconi, N., Cook, T., Wilson, C., and George, A.: Comparison of Multi-Phase Power Converters and Power Delivery Networks for Next- Generation Space Architectures. 2023 IEEE Aerospace Conference, Big Sky, MT. pp. 1-15, DOI: 10.1109/AERO55745.2023.10115579. 
  1. Green, C.; Haghani, N.; Hernandez-Pellerano, A.; Gheen, B.; Lanham, A.; Fraction, J.: MUSTANG: A Workhorse for NASA Spaceflight Avionics. IEEE Space Mission Challenges for Information Technology – IEEE Space Computing Conference Caltech (SMC-IT/SCC), Pasadena, CA. 
  1. Hodson, R., Chen, Y., and Douglas, S.: NESC Recommendations on Use of COTS Parts for NASA Missions (Phase II) & The ILPM Pathfinder. NASA Electronic Parts and Packaging Program’s Electronic Technology Workshop, June 12-15, 2023. 
  1. Hodson, R., Chen, Y., and Douglas, S.: Recommendations on Use of COTS Parts for NASA Missions. 2023 Space Computing Conference (SCC) Closed Session, El Segundo, CA, July 21, 2023. 
  1. Powell, W.: SpaceVPX Interoperability Study Briefing. SOSA Architecture Meeting, November 1, 2022. 
  1. Powell, W. and Hodson, R.: Advancing SpaceVPX Interoperability – Embedded Tech Trends, Chandler, AZ, January 23, 2023. 
  1. Powell, W.: NASA’s Vision for Spaceflight Avionics. 2023 Space Computing Conference (SCC) Closed Session, El Segundo, CA, July 21, 2023. 
  1. Rutishauser, D.; Prothro, J.; and Fail, J.: A System to Provide Deterministic Flight Software Operation and Maximize Multicore Processing Performance: The Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE) Datapath. IEEE Space Mission Challenges for Information Technology – IEEE Space Computing Conference, Caltech, Pasadena, CA, July 18-21, 2023. 
  1. Some, R.; Collier, P.; Hodson, R.; and Powell W.: SpaceVPX Interoperability. IEEE Space Computing Conference, Caltech, Pasadena, CA, USA – 18-21 July 2023. 

Flight Mechanics

  1. Restrepo, R. L.: Trajectory Reverse Engineering: A General Strategy for Transferring Trajectories Between Flight Mechanics Tools, AAS 23-312. 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, January 15-19, 2023. 

Loads and Dynamics

  1. Allgood, J. and Decker, A.: Space Launch System Day of Launch Loads for Artemis I. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  2. Bell, J.; Armand, S.; and Samareh, J.: Structural Evaluation and Optimization of Aeroshell Design Properties for Launch and Reentry Load Cases for Future AI-Informed Design Leveraging Large Datasets. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  3. Blelloch, P.: Efficient Calculation of Random Stress Results. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  4. Gardner, B.; Parrinello, A.; and Musser, C.: An Isogrid Panel Model for SEA. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  5. Griggs, L.; Allgood, J.; Swatzell, S.; Moseley, J.; Oliver, N.; and Decker, A.: Space Launch System Artemis 1 Ascent Loads Reconstruction. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  6. Hahn, S.; Lunetta, N.; Weathers, J.; Zuo, K.; and Decker, A.: Space Launch System Artemis 1 Rollout Loads Monitoring and Reconstruction. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  7. Kennedy, M. and Blough, J.: Shocksat Testing and Analysis Results. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  8. Kolaini, A.; Kinney, T.; and Johnson, D.: Guidance on Shock Qualification and Acceptance Test Requirements. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 
  9. Patel, H. and Parsons, D.: Pressure Transducer Shock Testing. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. 

Software

  1. Prokop, L.: A Study of Historical Flight Software Error Incidents to Influence Fault-Tolerant Design. 2023 Flight Software Workshop, March 20-23, 2023, Pasadena, CA.  

Space Environments

  1. Barrie, J.; Gouzman, I.; Hoffman, R.; Tighe, A.; Tagawa, M.; Miller, S.K.R.; de Groh, K.K.; Minow, J.I.; and Lao, Y.Y.: In-Situ Sensors for Monitoring the Space Environment and Its Effect Upon Satellite Materials [White paper]. Space Materials Workshop, July 24-28, 2023, virtual. 
  2. Davis, V.A.; and Mandell, M.J.: NASCAP Surface Charging Tool Development, Nascap-2k Additional Examples. NASA CR-20230010099, Langley Research Center, Hampton, VA, July 2023. 
  3. Dawkins, E.C.M.; Stober, G.; Janches, D.; Carrillo-Sánchez, J.D.; Lieberman, R.S.; Jacobi, C.; Moffat-Griffin, T.; Mitchell, N.J.; Cobbett, N.; Batista, P.P.; Andrioli, V.F.; Buriti, R.A.; Murphy, D.J.; Kero, J.; Gulbrandsen, N.; Tsutsumi, M.; Kozlovsky, A.; Kim, J.H.; Lee, C.; and Lester, M.: Solar Cycle and Long-term Trends in the Observed Peak of the Meteor Altitude Distributions by Meteor Radars. Geophysical Research Letters, 50, e2022GL101953. https://doi. org/10.1029/2022GL101953, 2023. 
  4. Debchoudhury, S.; Lin, D.; Coffey, V.N.; Barjatya, A.; Minow, J.I.; and Parker, L.N.: Plasma Irregularities Observed by ISS FPMU: Multi- instrument Case-study and Modeling Results. Abstract SA52A-24, AGU Fall Meeting 2022, December 12-16, 2022, Chicago, IL. 
  5. Debchoudhury, S.; Karan, D.; Barjatya, A.; Coffey, V.N.; and Minow, J.I.: Multi-layer Observations of Plasma Blobs and Bubbles using ICON, GOLD, and ISS FPMU. 2023 Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshop, June 25-30, 2023, San Diego, CA. 
  6. de Groh, K.; Stanton, J.S.; Minow, J.I.; Kimoto, Y.; Lord, E.M.; and Lao, Y.Y.: Space Materials Center [White paper]. Space Materials Workshop, July 24-28, 2023, virtual. 
  7. Janches, D.; Bruzonne, J.S.; Weryk, R.J.; Hormaechea, J.L.; and Brunini, C.: Radar Observations of the Arid Meteor Shower Outburst from Comet 15P/Finlay. Planetary Science Journal, 4, 165, 2023, https://dx.doi.org/10.3847/PSJ/ace82a. 
  8. Levine, J.S.: The Impact of Lunar Dust and Mars Dust on Human Exploration: Summary of the NASA Engineering and Safety Center (NESC) Workshop. Lunar Science Innovation Consortium Dust Mitigation Focus Group Meeting, January 19, 2023, virtual. 
  9. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.I.: NAIRAS Model Updates and Improvements to the Prediction of the Ionizing Radiation Environment from the Earth’s Surface to Geospace. Abstract SM35C-1769, AGU Fall Meeting 2022, December 12-16, 2022, Chicago, IL. 
  10. Mertens, C.J.; Gronoff, G.; Phoenix, D.; Paul, S.N.; Mehta, P.M.; Zheng, Y.; and Nunez, M.: NAIRAS Model Nowcasting and Forecasting of the Aviation Radiation Environment. 20th Conference on Space Weather, American Meteorological Society, 103rd Annual Meeting, January 8-12, 2023, Denver, CO. 
  11. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.: NAIRAS Model Updates and Improvements to the Prediction of Ionizing Radiation from Earth’s Surface to Cislunar Environment. NOAA Space Weather Workshop, April 17-21, 2023, Boulder, CO. 
  12. Mertens, C.J.; Gronoff, G.P.; Phoenix, D.; Zheng, Y.; Petrenko, M.; Buhler, J.; Jun, I.; Minow, J.I.; and Willis E.: NAIRAS Ionizing Radiation Model: Extension from Atmosphere to Space. NASA/TP- 20230006306, May 2023. 
  13. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.I.: NAIRAS Atmospheric and Space Radiation Environment Model. IEEE Nuclear and Space Radiation Effects Conference, July 24-28, 2023, Kansas City, MO. 
  14. Mertens, C.J.; Gronoff, G.P.; Zheng, Y.; Petrenko, M.; Buhler, J.; Phoenix, D.; Willis, E.; Jun, I.; and Minow, J.: NAIRAS model run- on-request service at CCMC. Space Weather, 21, e2023SW003473. https://doi.org/10.1029/2023SW003473, 2023. 
  15. Minow, J.I.; Meloy, R.; Parker, L.N.; and Collado-Vega, Y.: JWST Space Environments Launch Constraints. Fall 2022 Natural Environments Day- of-Launch Working Group, December 7, 2022, virtual. 
  16. Minow, J.I.: Impacts of the Space Environment on Lunar Exploration. AIAA-2023-2467, AIAA SciTech Forum and Exposition, January 23-27, 2023, National Harbor, MD (invited). 
  17. Minow, J.I.: Spacecraft Anomalies and Failures Workshop 2023: NASA Introductory Comments. Spacecraft Anomalies and Failures 2023 Workshop, March 29, 2023, Goddard Space Flight Center, Greenbelt, MD, and March 30, 2023, NRO HQ Westfields (invited). 
  18. Minow, J.I.: SCAF Workshop 2023: Day 1 Final Comments and Wrap- up. Spacecraft Anomalies and Failures 2023 Workshop, March 29, 2023, Goddard Space Flight Center, Greenbelt, MD and March 30, 2023, NRO HQ Westfields (invited). 
  19. Minow, J.I.: Low Energy Ionizing Radiation and Plasma Contributions to Radiation Dose in Materials at Sun-Earth Lagrange Points. 2023 Materials Research Society Spring Meeting and Exhibit, Symposium SF02: Materials in Space—Design and Testing, April 10-14, 2023, San Francisco, CA (invited). 
  20. Minow, J.I.; Debchoudhury, S.; Barjatya, A.; Coffey, V.; and Parker, L.N.: Floating Potential Measurement Unit (FPMU) Data Processing Algorithm and Analysis Assessment. NASA/TM-20230013386, NESC- RP-19-01434, September 2023. 
  21. Minow, J.I.: Surface Charging to High Voltages in the Space Environment. High Voltage Aerospace Systems Workshop, Energy & Mobility Technology, Systems, and Value Chain Conference and Expo, September 12-15, 2023, Cleveland, OH (invited). 
  22. Minow, J.I.; Diekmann, A.M.; Willis, E.M.; and Coffey, V.N.: L2-Charged Particle Environment (L2-CPE) Low Energy Radiation Fluence Model. Radiation and its Effects on Components and Systems Conference (RADECS) 2023, September 25-29, 2023, Toulouse, France. 
  23. Newheart, A.M.; Sazykin, S.; Coffey, V.N.; Chandler, M.O.; Coster, A. J.; Fejer, B.G.; Minow, J.I.; and Swenson, C.M.: Observations of Night-Time Equatorial Ionosphere Structure with the FPMU on board the International Space Station. Journal of Geophysical Research: Space Physics, 127, e2022JA030373. https://doi. org/10.1029/2022JA030373 2022. 
  24. Parker, L.N.; Jun, I.; and Minow, J.I.: Introduction to the Virtual Collection on the Applied Space Environments Conference 2021. Journal of Spacecraft and Rockets, Vol. 60, No. 2, pp. 374-374, doi/ abs/10.2514/1.A35728, 2023. 
  25. Schonberg, W. and Squire, M: Predicting High-speed Particle Impact Damage in Spacecraft Thermal Protection Systems. Journal of Space Safety Engineering. Accepted for publication. 
  26. Schonberg, W. and Squire, M.: Toward a More Generalized Ballistic Limit Equation for Multi-Shock Shield. Acta Astronautica. Accepted for publication. 
  27. Stober, G.; Weryk, R.; Janches, D.; Dawkins, E.C.M.; Günzkofer, F.; Hormaechea, J.L.; and Pokhotelov, D.: Polarization Dependency of Transverse Scattering and Collisional Coupling to the Ambient Atmosphere from Meteor Trails – Theory and Observations. Planetary and Space Science, 105768, ISSN 0032-0633, https://doi. org/10.1016/j.pss.2023.105768, 2023. 
  28. Thomsen, D.L.; Jordan, T.M.; Milic, L.; and Girard, W.: Decreasing Proton Single Event Effects in CubeSats with Shielding. 2023 Single Event Effects (SEE) Symposium and Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, May 15-19, 2023, La Jolla, CA. 
  29. Valinia, A.; and Minow, J.: Required Space Weather Reconnaissance in the Artemis Era. 54th Lunar and Planetary Science Conference, March 13-17, 2023, The Woodlands, TX. 
  30. Zheng, Y.; Jun, I.; Tu, W.; Sprits, Y.; Kim, W.; Miyoshi, Y.; Meier, M.; and Minow, J.: Overview, Progress and Next Steps for Our Understanding of the Near-Earth Space Radiation and Plasma Environment: Science and Applications. 28th International Union of Geodesy and Geophysics (IUGG) General Assembly, July 8-18, 2023, Berlin, Germany. 

Structures

  1. Arndt, C. and TerMaath, S.: Characterization of the Damage Tolerance of Composite Overlays through Subspace Evaluation. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023. 
  2. Babuska, P.; Tai, W.; Goyal, V.; and Rodriguez, A.: Novel Test and Analysis Methodology for the Assessment of Joint under Re-entry Environment. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. 
  3. Bo, D.; Hwangbo, H.; Sharma, V.; Arndt, C.; and TerMaath, S.: A Randomized Subspace-based Approach for Dimensionality Reduction and Important Variable Selection. Journal of Machine Learning Research, 24: 1-3010.48550/arxiv.2106.01584, 2023. 
  4. Bo, D.; Hwangbo, H.; and TerMaath, S.: Subspace Selection for High- Dimensional Experiments of Material Development Process. Institute of Industrial & Systems Engineers (IISE) Annual Conference and Expo, New Orleans, LA, May 20-23, 2023. 
  5. Brust, F. W.; Punch, E.; Twombly, E.; and Wallace, J: Estimation Scheme for Weld Residual Stress Effect on Crack Opening Displacements. ASME Pressure Vessels and Piping Conference, Paper PVP2023-107396, Atlanta, GA, July 2023. 
  6. Cardona, A.; Jegley, D.; and Lovejoy, A.: Manufacturing Trials of Integrally Stiffened Panels for Flight Applications. AIAA-2023-0781, SciTech 2023, National Harbor, MD, January 2023. 
  7. Cline, J.; Dorsey, J.; Kang, D.; Doggett, W.; and Allen, D.: Ideas For Infusing In-Space Servicing, Assembly and Manufacturing Concepts into Nuclear Electric Propulsion Architectures. Joint Army-Navy-NASA- Air Force (JANNAF) 12th Spacecraft Propulsion Joint Subcommittee Meeting, Huntsville, AL, December 2022. 
  8. Doggett, W.; Heppler, J.; Mahlin, M.; Pappa, R.; Teter, J.; Song, K.; White, B.; Wong, I.; and Mikulas, M.: Towers: Critical Initial Infrastructure for the Moon. AIAA-2023-0383, SciTech 2023, National Harbor, MD, January 2023. 
  9. Fleishel, R.; Ferrell, W.; and TerMaath, S.: Fatigue-Damage Initiation at Process Introduced Internal Defects in Electron-Beam-Melted Ti- 6Al-4V. 2023. Metals 13:2, 350. Special Issue: Deformation, Fracture and Microstructure of Metallic Materials, https://doi.org/10.3390/ met13020350. 
  10. Fleishel, R. and TerMaath, S.: Modeling fatigue overload behavior in microstructurally short cracks: connecting initiation and long crack behavior. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023. 
  11. Goyal, V.; Tuck-Lee, J.; Babuska, P.; and Zeitunian, E.: Lessons Learned in the Buckling Assessments of Space Structures. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. 
  12. Goyal, V.; Sagrillo, C.; Fannon, J.; Forth, S.; and Kezirian, M.: Space Systems Technical Guide for Composite Overwrapped Pressure Vessels. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. 
  13. Hart, D.; Balsara, Martinez, and TerMaath, S.: Multi-Scale Multi- Physics Bondline Strength Prediction Research. NATO Science & Technology Organization, Applied Vehicle Technology Panel (AVT-361) Research Workshop on Certification of Bonded Repair on Composite Aircraft Structures, Amsterdam, Netherlands, Oct 18-20, 2022. 
  14. Kaleel, I., Ricks, T.M., Gustafson, P.A., Pineda, E.J., Bednarcyk, B.A., and Arnold, S.M. (2023) “Massively Multiscale Modeling using NASA Multiscale Analysis Tool through Partitioned Task-Parallel Approach” 2023 AIAA SciTech Forum, 23-27 January 2023, National Harbor, MD. 
  15. Lin, L.: Correlation Study of SWOT Payload Acoustic Prediction and Test. AIAA SciTech, January 2023. 
  16. Ma, X. and TerMaath, S.: Microstructural Analysis of Intergranular Stress Corrosion Cracking in 5xxx Series Aluminum Reinforced with a Composite Patch. 2023. Advances in the Analysis and Design of Marine Structures. Ringsberg & Guedes Soares (Eds), CRC Press. ISBN 978-1-032-50636-4. 
  17. Pak, C.: Linear and Geometrically Nonlinear Structural Shape Sensing from Strain Data. AIAA Journal, Vol. 61, No. 2, 2023, pp. 907-922. 
  18. Pak, C.: Finite Element Model Tuning Using Analytical Sensitivity Values. Journal of Aircraft, Articles in Advance (Vol. 60, No. 2 or 3), 2023. 
  19. Panda, J.; Nguyen, M.P.; Keil. D.R.; and Hamm, K.R.: A Microphone Phased Array for Launch Acoustics Application. AIAA SciTech Conference, National Harbor, MD, (2023), AIAA Paper 2023-0790. 
  20. Qu, X.; Shimizu, L.; Rome J.; Nordendale, N.; and Goyal, V.: Reliability- based Damage Tolerance Analysis for Additive Manufacturing Part. NAFEMS World Congress 2023, Tampa, FL, May 2023. 
  21. Ricks, T. M.; Pineda, E. J.; Bednarcyk, B. A.; McCorkle, L. S.; Miller, S. G.; Murthy, P. L.; and Segal, K. N.: Multiscale Progressive Failure Analysis of 3D Woven Composites. 2022, Polymers, 14(20), 4340. 
  22. Rome, J. and Goyal, V.: Moving Towards a Print Then Use Framework for Additive Manufacturing. ASME SSDM 2023, June 2023, SSDM2023-111806, Accepted. 
  23. Rudd, M.T.; Eberlein, D.J.; Waters, W.A.; Gardner, N.W.; Schultz, M.R.; and Bisagni, C.: Analysis and Validation of a Scaled, Launch- Vehicle-Like Composite Cylinder under Axial Compression. Composite Structures, Volume 304, Part 1, January 2023. 
  24. Rudd, M.T.; Schultz, M.R.; Gardner, N.W.; and Bisagni, C.: Test and Analysis of a Composite Conical-Cylindrical Shell. AIAA SciTech 2023 Forum, AIAA paper no. AIAA 2023-1525, National Harbor, MD, January 2023. 
  25. Soltz, B.; Goyal, V.; Rome, J.; and Qu, X.: Structural Requirements, Process Simulation, and Residual Stress Characterization for Additively Manufactured Spaceflight Parts. AIAA 2023-2078, https:// doi.org/10.2514/6.2023-2078, AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. 
  26. Soltz, B.; Sivess, A.; Hickman, M.; Ghazari, A. and Shimizu, L.: Static Load Testing and Analysis Recommendations For Space Vehicles. OTR 2023-00653, 33rd Aerospace Testing Seminar, The Aerospace Corporation, May 16, 2023. 
  27. Song, K.; Mikulas, M.; Mahlin, M.; and Cassady, J.: Sizing and Design Tool for Tall Lunar Tower. AIAA-2023-0382, SciTech 2023, National Harbor, MD, January 2023. 
  28. Hammel, J.: Utilizing 3D-DIC on the Mars 2020 Rover Wheel Assembly: Test-Analysis Correlation. IEEE, March 2023. 
  29. Song, K.; Stark, A.; Amundsen, R.; Mikulas, M.; Mahlin, M.; and Cassady, J.: Sizing, Buckling, and Thermal-Structural Analysis of Tall Lunar Tower. 2023 AIAA ASCEND, Las Vegas, NV, October 2023. 
  30. TerMaath, S.: Multi-scale Computational Structural Mechanics. Turing- Oden Workshop on Data Science and Machine Learning. Alan Turing Institute, London, January 25-27, 2023. 
  31. TerMaath, S.; Crusenberry, C.; and Arndt, C.: Reduced Order Modeling of Progressive Failure in Composite/Metal Structure. 6th International Conference on Protective Structures, Auburn University, May 14-17, 2023. 
  32. TerMaath, S.: Probabilistic multi-scale characterization and prediction of bimaterial bondline structural reliability. Canadian National Research Council, Ottawa, June 1, 2023. 
  33. TerMaath, S.; Ingling, B.; Noland, J.; and Hart, D.: Evaluation of low-velocity impact damage in metal/composite layered structure. 8th International Symposium on Life-Cycle Civil Engineering (IALCCE). Milano, Italy, July 2-6, 2023. 
  34. Twombly, E.; Hill, L.; Wilkowski, G.; Brust, B.; Lin, B.; and Tregoning, R.: Evaluation of the Inherent LBB Behavior of Small-Diameter Class 1 and 2 Nuclear Piping Systems. ASME Pressure Vessels and Piping Conference, Paper PVP2023-107685, Atlanta, GA, July 2023. 
  35. Ytuarte, E.; Ragheb, H.; Sobey, A.; and TerMaath, S.: Peridynamics with stochastic bond strengths for determination of final failure in composite laminates. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023.2022, Park City, UT.

Systems Engineering

  1. Driscoll, A. and Vining, G.: Debunking Stress Rupture Theories Using Weibull Regression Plots. Fall Technical Conference, October 12-14, 2022, Park City, UT 
  2. Driscoll, A.: Advances in Stress Rupture Modeling: A Case Study for Predicting COPV Reliability. Joint Statistical Meetings, August 5-10, 2023, Toronto, Canada. 
  3. Huang, Z. C.: Toward Closed Form Formulas for System Reliability and Confidence Quantification. 2023 Annual Reliability and Maintainability Symposium (RAMS), January 23-26, 2023, DOI: 10.1109/RAMS51473.2023.10088214. 
  4. Parker, P. and Wilson, S.: Motivating Statistical Research for NASA Applications. Joint Statistical Meetings, August 5-10, 2023, Toronto, Canada. 

Thermal Control and Protection 

  1. Rickman, S.: Re-Architecting the NASA Wire Derating Approach, Phase II, Wire and Wire Bundle Ampacity Testing and Analysis. Aerospace Electrical Interconnect Symposium, October 2022, Houston, TX. 
  2. Rickman, S.: Space Mission Thermal Control and Protection Challenges – Past, Present, and Future. The Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), June 2023, Orlando, FL. 
  3. Rickman, S.: Introduction to Orbits. Rice/Envision Aerospace and Aviation Academy, June 2023, Houston, TX. 
  4. Rickman, S.: Development and Application of a Novel Calorimetry Technique for the Study of Lithium-Ion Cell Thermal Runaway., International Conference on Environmental Systems (ICES), July 2023, Calgary, Canada. 
  5. Rickman, S.: Introduction to On-Orbit Thermal Environments. Thermal and Fluids Analysis Workshop (TFAWS), August 2023, College Park, MD. 
  6. Shafirovich, E. and Rickman, S.: A Warm Garage for a Lunar Rover, Commercial Lunar Payload Services. Survive the Night Technology Workshop, December 2022, Cleveland, OH. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept of the X-66 aircraft Boeing will produce through NASA’s Sustainable Flight Demonstrator project. The aircraft, designed to prove the concept of more aerodynamic, fuel-efficient transonic truss-braced wings, is an example of the type of project model-based systems analysis and engineering will provide benefits to.Boeing As NASA continues cutting-edge aeronautics research, the agency also is taking steps to make sure the benefits from these diverse technologies are greater than the sum of their parts.
      To tackle that challenge, NASA is using Model-Based Systems Analysis and Engineering (MBSAE). This type of engineering digitally simulates how multiple technologies could best work together as a single, complex system. It is performed using advanced digital tools and computing programs.
      The goal: Optimize the next generation of 21st-century aviation technology.
      Model Benefits
      “MBSAE provides a way to envision how all these technologies, being developed separately, can all fit together in the end,” said Eric Hendricks, who leads MBSAE integration efforts for NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington.
      By using this form of digital engineering, NASA’s aeronautical innovators can have a better idea of how their research in one area (say, ultra-efficient airliners) could best benefit, and work in tandem, with another area (say, future airspace safety).
      Using detailed, customizable digital models, researchers can simulate these complex systems working together with a high degree of accuracy and then figure out how the greatest benefits could be achieved.
      “As we move toward these advanced systems, MBSAE can connect different disciplines and determine how to eke out the best performance,” Hendricks said.
      That process feeds back into the research itself, helping researchers to significantly improve aviation’s sustainability – amongst other goals.
      Zeroing In
      MBSAE does more than integrating complex systems, however. Each system, individually, can be optimized using MBSAE tools.
      “Before the technology is even fully developed, we can run highly accurate digital simulations that inform the research itself,” Hendricks said. “A digital flight test is a lot simpler and less costly than a real flight test.”
      For example, one of NASA’s new MBSAE tools, Aviary, includes the ability to consider gradients. That means Aviary can figure out how to more efficiently optimize a given technology.
      Say a researcher would like to know which type of battery is needed to power an airplane during a certain maneuver. The researcher inputs information about the airplane, the maneuver, and battery technologies into Aviary, then Aviary goes and runs digital flight tests and comes back with which type of battery worked best.
      Digital flights tests like this can be done for myriad other areas as well, ranging from an aircraft’s overall shape to the size of its engine core, its electrical systems, and beyond. Then, the digital flight tests can help figure out how to combine these systems in the most effective way.
      Digital Era Aeronautics
      Another way MBSAE can come in handy is the scale of these aviation transformations.
      With demand for single-aisle airliners expected to rise dramatically in the coming decades, measuring the emissions reductions from a certain wing design, for example, would not just extend to one aircraft, but also an entire fleet.
      “We’ll be able to take what we learn from our sustainable aviation projects and simulate the technology entering the fleet at certain points,” said Rich Wahls, NASA’s mission integration manager for the Sustainable Flight National Partnership at NASA Headquarters. “We can model the fleet itself to see how much more sustainable these technologies are across the board.”
      Ultimately, MBSAE also represents a new era in aeronautical innovation – both at NASA and in the aviation industry, with whom NASA is working closely to ensure its MBSAE efforts are cross compatible on an opensource platform.
      “The MBSAE team has lots of early-to-mid career folks,” Hendricks said. “It’s great to see the younger generation get involved and even take the lead, especially since these digital efforts can facilitate knowledge transfer as well.”
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read System-Wide Safety Project Description
      Article 4 days ago 1 min read System-Wide Safety Project Leadership
      Article 4 days ago 3 min read NASA Embraces Streaming Service to Reach, Inspire Artemis Generation
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 04, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Flight Innovation Sustainable Flight National Partnership View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
      To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
      Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
      Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.
      Swati Saxena
      NASA Aerospace Engineer
      “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
      The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
      “Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
      The platform and digital services have even more benefits than just saving some time on a journey.
      For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
      Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
      It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
      Managing Future Air Traffic
      During the 2030s and beyond, the skies above the United States are expected to become much busier.
      Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
      NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
      What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
      These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
      Digital Services Ecosystem in Action
      To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
      “These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
      The results from these digital tools are already making a difference.
      Proven Air Traffic Results
      During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
      If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
      “Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
      DIP was developed under NASA’s Airspace Operations and Safety Program.
      Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 2 weeks ago 2 min read Hypersonic Technology Project Overview
      Article 3 weeks ago 2 min read Hypersonics Technical Challenges
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program View the full article
    • By NASA
      NASA Administrator Bill Nelson delivers remarks during an event with Department of Health and Human Services Secretary Xavier Becerra to highlight how the agencies are making progress toward the Biden Cancer Moonshot on March 21 in the Earth Information Center at the Mary W. Jackson NASA Headquarters building in Washington. NASA is working with agencies and researchers across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative.Credits: NASA/Keegan Barber As part of the Biden Cancer Moonshot, NASA will virtually host an event at 2 p.m. EDT Thursday, July 11, to highlight how the agency is working to end cancer for the benefit of humanity by conducting research aboard the International Space Station.
      The event will stream on NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media.
      Additional participants include:
      Dr. Michael Roberts, chief scientific officer, International Space Station National Laboratory Dr. Catriona Jamieson, director, Sanford Stem Cell Institute at the University of California San Diego As a member of the Cancer Cabinet, NASA is working with agencies and researchers across the federal government to reduce the nation’s cancer death rate by at least 50% in the next 25 years, one of the ambitious but achievable goals of the Cancer Moonshot.
      Learn more about the Biden Cancer Moonshot at:
      https://www.whitehouse.gov/cancermoonshot/
      -end-
      Faith McKie
      Headquarters, Washington
      202-358-1600
      faith.d.mckie@nasa.gov
      Share
      Details
      Last Updated Jul 10, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Credits: NASA NASA and the Hudson Square Business Improvement District are launching an open call to New York-based artists and artist teams to design and install a large-scale, space-themed neighborhood mural. The NASA x Hudson Square partnership was developed to inspire the surrounding Manhattan Hudson Square community by showcasing NASA’s work and missions.
      Artists are encouraged to submit proposals for the project and detail how their mural will illustrate the impact of NASA’s priorities, such as the agency’s James Webb Space Telescope, climate science and innovation, and the Artemis campaign exploring the Moon. Applications are due by Friday, June 28.
      The selected project will receive a $20,000 award for design fees, materials, labor, and equipment, with a portion of funds provided by NASA and matched by Hudson Square Business Improvement District. The mural installation is expected to be complete by September.
      NASA continues to seek opportunities to inspire the next generation of explorers – the Artemis Generation – through collaborations with partners like the Hudson Square Business Improvement District. Details about submitting project proposals are available on the Hudson Square web page. For questions about applying to the NASA x Hudson Square mural project, contact PublicArt@HudsonSquareBID.org.
      Share
      Details
      Last Updated Jun 25, 2024 Related Terms
      General Explore More
      5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
      Article 2 hours ago 2 min read NASA Infrared Detector Technical Interchange
      Article 4 hours ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 8 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NESC Honor Awards are given each year to NASA employees, industry representatives, and other stakeholders for their efforts and achievements in engineering, leadership, teamwork, and communication. These awards formally recognize those who have made outstanding contributions to the NESC mission, demonstrate engineering and technical excellence, and foster an open environment. 
      2022 Honorees from left to right: (Front Row) Tim Wilson (NESC Director); Yuan Chen (LaRC), Elspeth Peterson (KSC), Grace Belancik (ARC), Jing Pei (LaRC), Mark Vande Hei (NESC Chief Astronaut); (Second row) James Walker (MSFC), Carlton Faller (JSC), Jason Vaughn (MSFC), Shane Cravens (Syncom Space Services, SSC), Shawn Brechbill (MSFC), Kevin Dickens (GRC); (Third row) Christopher Johnston (LaRC).   NESC Director’s Award 
      Honors individuals for defending a technical position that conflicts with a program or organization’s initial or prevailing engineering perspectives and for taking personal initiative to foster clear and open communication and resolve controversial issues. 
      DANIEL L. DIETRICH – In recognition of the development and advocacy of the technical rationale to assess the safety and effectiveness of breathing systems for pilots of tactical aircraft. 

      NESC Leadership Award 
      Honors individuals for sustained leadership excellence demonstrated by establishing a vision, developing and managing a plan, and building consensus to proactively resolve conflicts and achieve results. 
      YUAN CHEN – In recognition of outstanding leadership in  the electrical, electronic, electromechanical parts’ community and the development of recommendations on the use of commercial parts in NASA missions. 
      NIKOLAUS GRAVENSTEIN – In recognition of outstanding technical leadership in support of Verification of Testing Standard for Carbon Dioxide (CO2) Partial Pressure in Extravehicular Activity Suits. 
      ELSPETH M. PETERSEN – In recognition of outstanding leadership to the Spacesuit Water Membrane Evaporator Assessment Team in negotiating creative solutions and facility challenges. 
      PATRICK A. SIMPKINS – In recognition of outstanding technical leadership in support of numerous NESC assessments to reduce risk to NASA’s most critical human and robotic spaceflight programs. 

      NESC Engineering Excellence Award 
      Honors individuals for making significant engineering contributions, developing innovative approaches, and ensuring appropriate levels of engineering rigor are applied to the resolution of technical issues in support of the NESC mission. 
      KEVIN W. DICKENS – In recognition of engineering excellence and sustained commitment to the NESC Propulsion Technical Discipline Team and NASA missions. 
      View the full article
  • Check out these Videos

×
×
  • Create New...